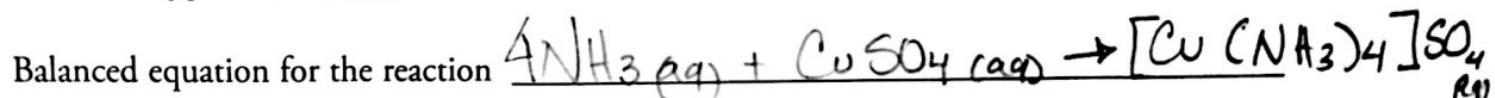


# ENTHALPIES OF REACTION

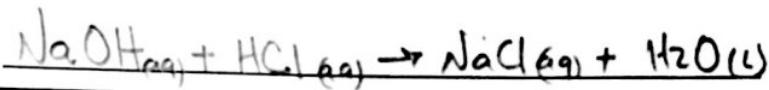
## DATA SHEET


### 5.1: Calibration

Record the heat capacity of the calorimeter,  $C_{\text{cal}}$  : 37.5 J/K

### 5.2: Enthalpy of solution

|   |                                                                         | Salt #1        | Salt #2                  |
|---|-------------------------------------------------------------------------|----------------|--------------------------|
|   | Identity of the ionic salt                                              | $\text{KNO}_3$ | $\text{Na}_2\text{CO}_3$ |
|   | specific heat                                                           | 4.085 J/K g    | 3.992 J/K g              |
|   | mass <sub>dry empty calorimeter</sub>                                   | 6.79           | 6.79                     |
|   | mass <sub>calorimeter + water</sub>                                     | 55.95          | 55.95                    |
| 1 | mass <sub>water</sub>                                                   |                |                          |
|   | mass <sub>ionic salt</sub>                                              | 1.94           | 2.00                     |
| 2 | moles <sub>ionic salt</sub>                                             |                |                          |
| 3 | mass <sub>solution (salt + water)</sub>                                 |                |                          |
|   | $T_{\text{initial soln}}$                                               | 23.0 °C        | 22.8 °C                  |
|   | $T_{\text{final soln}}$                                                 | 21.5 °C        | 24.5 °C                  |
| 4 | $\Delta T$                                                              |                |                          |
| 5 | $q_{\text{cal}}$                                                        |                |                          |
| 6 | $q_{\text{soln}}$                                                       |                |                          |
| 7 | $q_{\text{rxn}}$                                                        |                |                          |
| 8 | $\Delta H_{\text{rxn}} = q_{\text{rxn}} / \text{mass of salt (J/g)}$    |                | -                        |
| 9 | $\Delta H_{\text{rxn}} = q_{\text{rxn}} / \text{moles of salt (J/mol)}$ |                |                          |


### 5.3: Enthalpy of formation



|    |                                                                                                                                                                                             | Metal Cation Reactant | Complexing Reactant |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|
|    | Identification                                                                                                                                                                              | $\text{Cu}^{2+}$      | $\text{NH}_3$       |
|    | Molarity                                                                                                                                                                                    | 0.5 M                 | 6.0 M               |
|    | Volume                                                                                                                                                                                      |                       |                     |
| 10 | Moles                                                                                                                                                                                       |                       |                     |
|    | $T_{\text{init}}$                                                                                                                                                                           | 21.0 °C               | 20.0 °C             |
| 11 | Average $T_{\text{init}}$                                                                                                                                                                   |                       |                     |
|    | $T_{\text{final products}}$                                                                                                                                                                 |                       | 25.1 °C             |
| 12 | $\Delta T$                                                                                                                                                                                  |                       |                     |
| 13 | Mass of the solution<br>( $\text{Mass}_{\text{solution}} = \text{Density}_{\text{rxn mixture}} \times \text{Volume}_{\text{rxn mixture}}$ )<br>Density of the reaction mixture is 1.01 g/mL |                       |                     |
| 14 | $q_{\text{cal}}$                                                                                                                                                                            |                       |                     |
| 15 | $q_{\text{soln}}$                                                                                                                                                                           |                       |                     |
| 16 | $q_{\text{rxn}}$                                                                                                                                                                            |                       |                     |
| 17 | Moles <sub>limiting reactant</sub>                                                                                                                                                          |                       |                     |
| 18 | Moles <sub>metal complex formed</sub>                                                                                                                                                       |                       |                     |
| 19 | $\Delta H_{\text{rxn}} = q_{\text{rxn}} / \text{moles}_{\text{metal complex formed}} \text{ (J/mol)}$                                                                                       |                       |                     |

### 5.4: Enthalpy of Neutralization

Balanced equation for the reaction



|    |                                                                                                                                                                                        | Reaction with HCl |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|    | Identity of the acid                                                                                                                                                                   | HCl               |
|    | Molarity of the acid                                                                                                                                                                   | 1 M               |
|    | Volume of the acid                                                                                                                                                                     | 25.0 mL           |
| 20 | Moles of the acid                                                                                                                                                                      |                   |
|    | Identification of the base                                                                                                                                                             | NaOH              |
|    | Molarity of the base                                                                                                                                                                   | 1.1 M             |
|    | Volume of the base                                                                                                                                                                     | 25.0 mL           |
| 21 | Moles of the base                                                                                                                                                                      |                   |
|    | $T_{\text{init, acid}}$                                                                                                                                                                | 21.5 °C           |
|    | $T_{\text{init, base}}$                                                                                                                                                                | 20.8 °C           |
| 22 | Average $T_{\text{init}}$ for the acid and base                                                                                                                                        |                   |
|    | $T_{\text{final products}}$                                                                                                                                                            | 22.0 °C           |
| 23 | $\Delta T = T_f - T_i$                                                                                                                                                                 |                   |
| 24 | Mass of the solution<br>( $\text{Mass}_{\text{solution}} = \text{Density}_{\text{rxn mix}} \times \text{Volume}_{\text{rxn mix}}$ )<br>Density of the reaction mixture is<br>1.00 g/mL |                   |
| 25 | $q_{\text{cal}} = C_{\text{cal}} \times \Delta T$                                                                                                                                      |                   |
| 26 | $q_{\text{soln}} = C_{\text{soln}} \times m_{\text{soln}} \times \Delta T$                                                                                                             |                   |
| 27 | $q_{\text{rxn}} = q_{\text{rxn, O}} = q_{\text{rxn, n}} + q_{\text{soln}} + q_{\text{cal}}$                                                                                            |                   |
| 28 | Moles <sub>limiting reactant</sub>                                                                                                                                                     |                   |
| 29 | Moles <sub><math>\text{H}_2\text{O}</math> formed</sub>                                                                                                                                |                   |
| 30 | $\Delta H_{\text{rxn}} = q_{\text{rxn}} / \text{moles}_{\text{H}_2\text{O formed}} (\text{J/mol})$                                                                                     |                   |

As always, attach your sample calculations. Calculations were performed for the shaded rows.